Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors.
نویسندگان
چکیده
A method for producing nanocomposites of transition metal oxides A(3)O(4) (where A represents Mn, Fe or Co) and graphene nanosheets (GNS) is presented. The reduction of graphene oxide (GO) and the formation of A(3)O(4) nanoparticles (NPs) were carried out simultaneously during the reaction. The electrochemical properties of A(3)O(4)-GNS nanocomposites as electrode materials for supercapacitors are investigated by cyclic voltammetry and galvanostatic charge-discharge tests. The as-prepared Mn(3)O(4)-GNS, Fe(3)O(4)-GNS and Co(3)O(4)-GNS nanocomposites exhibit large specific capacitance (708, 358 and 240 F g(-1), respectively), high energy density (20, 10 and 7 W h kg(-1), respectively) and good electrochemical stability (retention of 73%, 67.8% and 95.8%, respectively, after 1000 charge-discharge cycles). The excellent electrochemical performance of the A(3)O(4)-graphene nanocomposites indicates great potential in the application in commercial supercapacitors.
منابع مشابه
Preparation and characterization of Graphene/Nickel Oxide nanorods composite
Graphene-based nanocomposites are newly emerged materials with a wide range of applications such as in supercapacitors electrode. The high conductivity and ability for passing electric current, makes Graphene an appropriate new item to be used in cells. Electroactive transition metal oxides, owing fast reversible redox pairs, are used to store electrical charge. Furthermore, the Graphene/NiO na...
متن کاملPreparation and characterization of Graphene/Nickel Oxide nanorods composite
Graphene-based nanocomposites are newly emerged materials with a wide range of applications such as in supercapacitors electrode. The high conductivity and ability for passing electric current, makes Graphene an appropriate new item to be used in cells. Electroactive transition metal oxides, owing fast reversible redox pairs, are used to store electrical charge. Furthermore, the Graphene/NiO na...
متن کاملReduced Graphene Oxide-Cr2O3 Nanocomposite as Electrode Material in Supercapacitors
In recent years, electrochemical supercapacitors have received considerable attention from many researchers. Metal oxides such as chromium oxide with high redox activity, high specific capacity, and excellent reversibility are suitable alternatives to ruthenium oxide in supercapacitor applications. In this study, first, graphene oxide (GO) was synthesized by the modified Hummers method. The syn...
متن کاملFabrication of cu based metal-organic framework / graphene Nanocomposite and study electrochemical performance in supercapacitors
High conductivity and high level of electrolyte availability are the main requirements of active materials used in supercapacitors (SCs) to achieve high electrochemical efficiency. In recent years, metal-organic frameworks (MOFs) have been used as electrode materials for SCs due to their suitability of porosity and high surface area. However, using single-component MOFs in supercapacitors resul...
متن کاملEffect of processing parameters on the electrochemical performance of graphene/ nickel ferrite (G-NF) nanocomposite
Fuel cells, secondary batteries and capacitors are among many promising energy storage devices. In particular, supercapacitors have attracted much attention because of their long life cycle and high power density. Graphene/nickel ferrite(G-NF) based supercapacitors were successfully fabricated through a one-step facile solvothermal route. Effects of synthesis conditions i.e. solvothermal time a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 47 شماره
صفحات -
تاریخ انتشار 2012